Groups Definable in Separably Closed Fields

نویسنده

  • E. BOUSCAREN
چکیده

We consider the groups which are infinitely definable in separably closed fields of finite degree of imperfection. We prove in particular that no new definable groups arise in this way: we show that any group definable in such a field L is definably isomorphic to the group of L-rational points of an algebraic group defined over L.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Groups Interpretable in Theories of Fields

We survey some results on the structure of the groups which are definable in theories of fields involved in the applications of model theory to Diophantine geometry. We focus more particularly on separably closed fields of finite degree

متن کامل

When Does Nip Transfer from Fields to Henselian Expansions?

Let K be an NIP field and let v be a henselian valuation on K. We ask whether (K, v) is NIP as a valued field. By a result of Shelah, we know that if v is externally definable, then (K, v) is NIP. Using the definability of the canonical p-henselian valuation, we show that whenever the residue field of v is not separably closed, then v is externally definable. We also give a weaker statement for...

متن کامل

The Mordell-lang Theorem for Drinfeld Modules

We study the quasi-endomorphism ring of certain infinitely definable subgroups in separably closed fields. Based on the results we obtain, we are able to prove a MordellLang theorem for Drinfeld modules of finite characteristic. Using specialization arguments we prove also a Mordell-Lang theorem for Drinfeld modules of generic characteristic.

متن کامل

The Mordell-lang Theorem for Drinfeld Modules and Minimal Groups in the Theory of Separably Closed Fields

We present a Mordell-Lang statement for Drinfeld modules. In the case of Drinfeld modules of finite characteristic, we show the connection between our Mordell-Lang statement and the study of the ring of quasi-endomorphisms for a certain minimal group in the theory of separably closed fields associated to the Drinfeld module.

متن کامل

Types of transcendence degree 1 are separably thin

We prove that the types in Separably Closed Hasse Fields which have transcendence degree 1 are separably thin

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001